Raptor downregulation rescues neuronal phenotypes in mouse fashions of Tuberous Sclerosis Advanced | Aici


  • Mizuguchi, M. & Takashima, S. Neuropathology of tuberous sclerosis. Mind Dev. 23, 508–515 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Curatolo, P., Moavero, R. & de Vries, P. J. Neurological and neuropsychiatric facets of tuberous sclerosis advanced. Lancet Neurol. 14, 733–745 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Nabbout, R. et al. Epilepsy in tuberous sclerosis advanced: findings from the TOSCA Examine. Epilepsia Open 4, 73–84 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chu-Shore, C. J., Main, P., Camposano, S., Muzykewicz, D. & Thiele, E. A. The pure historical past of epilepsy in tuberous sclerosis advanced. Epilepsia 51, 1236–1241 (2010).

    Article 
    PubMed 

    Google Scholar 

  • de Vries, P. J. et al. A medical replace on tuberous sclerosis complex-associated neuropsychiatric problems (TAND). Am. J. Med. Genet. C: Semin. Med. Genet. 178, 309–320 (2018).

    Article 

    Google Scholar 

  • Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Construction of the FKBP12-rapamycin advanced interacting with the binding area of human FRAP. Science 273, 239–242 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent style and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karalis, V. & Bateup, H. S. Present approaches and future instructions for the remedy of mTORopathies. Dev. Neurosci. 1–16, https://doi.org/10.1159/000515672 (2021).

  • Meikle, L. et al. Response of a neuronal mannequin of tuberous sclerosis to mammalian goal of rapamycin (mTOR) inhibitors: results on mTORC1 and Akt signaling result in improved survival and performance. J. Neurosci. 28, 5422–5432 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franz, D. N. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis advanced. Ann. Neurol. 59, 490–498 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franz, D. N. et al. Efficacy and security of everolimus for subependymal large cell astrocytomas related to tuberous sclerosis advanced (EXIST-1): a multicentre, randomised, placebo-controlled part 3 trial. Lancet 381, 125–132 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krueger, D. A. et al. Everolimus long-term security and efficacy in subependymal large cell astrocytoma. Neurology 80, 574–580 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardamone, M. et al. Mammalian goal of rapamycin inhibitors for intractable epilepsy and subependymal large cell astrocytomas in tuberous sclerosis advanced. J. Pediatr. 164, 1195–1200 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • French, J. A. et al. Adjunctive everolimus remedy for treatment-resistant focal-onset seizures related to tuberous sclerosis (EXIST-3): a part 3, randomised, double-blind, placebo-controlled research. Lancet 388, 2153–2163 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaplan, B., Qazi, Y. & Wellen, J. R. Methods for the administration of antagonistic occasions related to mTOR inhibitors. Transpl. Rev. (Orlando) 28, 126–133 (2014).

    Article 

    Google Scholar 

  • Krueger, D. A. et al. Everolimus for remedy of tuberous sclerosis complex-associated neuropsychiatric problems. Ann. Clin. Transl. Neurol. 4, 877–887 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Overwater, I. E. et al. A randomized managed trial with everolimus for IQ and autism in tuberous sclerosis advanced. Neurology 93, e200–e209 (2019).

    Article 
    PubMed 

    Google Scholar 

  • van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

    Article 
    PubMed 

    Google Scholar 

  • European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

  • Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis advanced gene merchandise, Tuberin and Hamartin, management mTOR signaling by performing as a GTPase-activating protein advanced towards Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, H. et al. Structural insights into TSC advanced meeting and GAP exercise on Rheb. Nat. Commun. 12, 339 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. mTOR kinase construction, mechanism and regulation. Nature 497, 217–223 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hara, Okay. et al. Raptor, a binding accomplice of goal of rapamycin (TOR), mediates TOR motion. Cell 110, 177–189 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. H. et al. mTOR interacts with raptor to type a nutrient-sensitive advanced that indicators to the cell development equipment. Cell 110, 163–175 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gingras, A. C., Raught, B. & Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burnett, P. E., Barrow, R. Okay., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hara, Okay. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26457–26463 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell dimension is managed by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateup, H. S., Denefrio, C. L., Johnson, C. A., Saulnier, J. L. & Sabatini, B. L. Temporal dynamics of a homeostatic pathway controlling neural community exercise. Entrance. Mol. Neurosci. 6, 28 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Switon, Okay., Kotulska, Okay., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience 341, 112–153 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, G. Y. & Sabatini, D. M. mTOR on the nexus of diet, development, ageing and illness. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarbassov, D. D. et al. Extended rapamycin remedy inhibits mTORC2 meeting and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scaiola, A. et al. The three.2-A decision construction of human mTORC2. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abc1251 (2020).

  • Sarbassov, D. D. et al. Rictor, a novel binding accomplice of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urbanska, M., Gozdz, A., Swiech, L. J. & Jaworski, J. Mammalian goal of rapamycin advanced 1 (mTORC1) and a pair of (mTORC2) management the dendritic arbor morphology of hippocampal neurons. J. Biol. Chem. 287, 30240–30256 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. mTORC2 controls actin polymerization required for consolidation of long-term reminiscence. Nat. Neurosci. 16, 441–448 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angliker, N. & Ruegg, M. A. In vivo proof for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture 3, 113–118 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCabe, M. P. et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct capabilities in glutamatergic synaptic transmission. Elife 9, https://doi.org/10.7554/eLife.51440 (2020).

  • Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR advanced. Science 307, 1098–1101 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saxton, R. A. & Sabatini, D. M. mTOR signaling in development, metabolism, and illness. Cell 168, 960–976 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, J. & Proud, C. G. Signaling crosstalk between the mTOR complexes. Translation (Austin) 2, e28174 (2014).

    Google Scholar 

  • Chen, C. J. et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities related to Pten-deficiency. Nat. Med. 25, 1684–1690 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, P. J., Chen, C. J., Mays, J., Stoica, L. & Costa-Mattioli, M. mTORC2, however not mTORC1, is required for hippocampal mGluR-LTD and related behaviors. Nat. Neurosci. 21, 799–802 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateup, H. S., Takasaki, Okay. T., Saulnier, J. L., Denefrio, C. L. & Sabatini, B. L. Lack of Tsc1 in vivo impairs hippocampal mGluR-LTD and will increase excitatory synaptic operate. J. Neurosci. 31, 8862–8869 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevere-Torres, I. et al. Metabotropic glutamate receptor-dependent long-term despair is impaired because of elevated ERK signaling within the DeltaRG mouse mannequin of tuberous sclerosis advanced. Neurobiol. Dis. 45, 1101–1110 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Auerbach, B. D., Osterweil, E. Okay. & Bear, M. F. Mutations inflicting syndromic autism outline an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Potter, W. B. et al. Diminished juvenile long-term despair in tuberous sclerosis advanced is mitigated in adults by compensatory recruitment of mGluR5 and Erk signaling. PLoS Biol. 11, e1001627 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwiatkowski, D. J. et al. A mouse mannequin of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase exercise in Tsc1 null cells. Hum. Mol. Genet 11, 525–534 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, F. et al. A important position for Rictor in T lymphopoiesis. J. Immunol. 189, 1850–1857 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Magee, J. A. et al. Temporal adjustments in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11, 415–428 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorski, J. A. et al. Cortical excitatory neurons and glia, however not GABAergic neurons, are produced within the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells results in growth of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9, 447–462 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carson, R. P., Van Nielen, D. L., Winzenburger, P. A. & Ess, Okay. C. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45, 369–380 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carson, R. P., Fu, C., Winzenburger, P. & Ess, Okay. C. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis advanced. Hum. Mol. Genet. 22, 140–152 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meikle, L. et al. A mouse mannequin of tuberous sclerosis: neuronal lack of Tsc1 causes dysplastic and ectopic neurons, lowered myelination, seizure exercise, and restricted survival. J. Neurosci. 27, 5546–5558 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateup, H. S. et al. Excitatory/Inhibitory synaptic imbalance results in hippocampal hyperexcitability in mouse fashions of tuberous sclerosis. Neuron 78, 510–522 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulkarni, R. U. et al. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc. Natl Acad. Sci. USA 114, 2813–2818 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dana, H. et al. Delicate pink protein calcium indicators for imaging neural exercise. Elife 5, https://doi.org/10.7554/eLife.12727 (2016).

  • Goorden, S. M., van Woerden, G. M., van der Weerd, L., Cheadle, J. P. & Elgersma, Y. Cognitive deficits in Tsc1+/- mice within the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648–655 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Ehninger, D. et al. Reversal of studying deficits in a Tsc2+/- mouse mannequin of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozovaya, N. et al. Selective suppression of extreme GluN2C expression rescues early epilepsy in a tuberous sclerosis murine mannequin. Nat. Commun. 5, 4563 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gataullina, S. et al. Epilepsy in younger Tsc1(+/-) mice displays age-dependent expression that mimics that of human tuberous sclerosis advanced. Epilepsia 57, 648–659 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nadadhur, A. G. et al. Neuron-Glia interactions enhance neuronal phenotypes in tuberous sclerosis advanced affected person iPSC-derived fashions. Stem Cell Rep. 12, 42–56 (2019).

    Article 

    Google Scholar 

  • Alsaqati, M., Heine, V. M. & Harwood, A. J. Pharmacological intervention to revive connectivity deficits of neuronal networks derived from ASD affected person iPSC with a TSC2 mutation. Mol. Autism 11, 80 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winden, Okay. D. et al. Biallelic mutations in TSC2 result in abnormalities related to cortical tubers in human iPSC-derived neurons. J. Neurosci. 39, 9294–9305 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thoreen, C. C. et al. An ATP-competitive mammalian goal of rapamycin inhibitor reveals rapamycin-resistant capabilities of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lebrun-Julien, F. et al. Balanced mTORC1 exercise in oligodendrocytes is required for correct CNS myelination. J. Neurosci. 34, 8432–8448 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shi, Q., Saifetiarova, J., Taylor, A. M. & Bhat, M. A. mTORC1 activation by lack of Tsc1 in myelinating glia causes downregulation of quaking and neurofascin 155 resulting in paranodal area disorganization. Entrance Cell Neurosci. 12, 201 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ercan, E. et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse mannequin of tuberous sclerosis advanced. J. Exp. Med. 214, 681–697 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bercury, Okay. Okay. et al. Conditional ablation of raptor or rictor has differential affect on oligodendrocyte differentiation and CNS myelination. J. Neurosci. 34, 4466–4480 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Crino, P. B. The mTOR signalling cascade: paving new roads to remedy neurological illness. Nat. Rev. Neurol. 12, 379–392 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, W. C., Chen, Y. & Web page, D. T. Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse mannequin of macrocephaly/autism syndrome. Nat. Commun. 7, 13421 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carracedo, A. & Pandolfi, P. P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, G., Murashige, D. S., Humphrey, S. J. & James, D. E. A constructive suggestions loop between Akt and mTORC2 by way of SIN1 phosphorylation. Cell Rep. 12, 937–943 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhattacharya, Okay., Maiti, S. & Mandal, C. PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma by way of Rictor hyperphosphorylation at Thr1135 and direct the mode of motion of an mTORC1/2 inhibitor. Oncogenesis 5, e227 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weston, M. C., Chen, H. & Swann, J. W. Lack of mTOR repressors Tsc1 or Pten has divergent results on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures. Entrance. Mol. Neurosci. 7, 1 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inoki, Okay., Li, Y., Xu, T. & Guan, Okay. L. Rheb GTPase is a direct goal of TSC2 GAP exercise and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J., Dibble, C. C., Matsuzaki, M. & Manning, B. D. The TSC1-TSC2 advanced is required for correct activation of mTOR advanced 2. Mol. Cell Biol. 28, 4104–4115 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. & Manning, B. D. A fancy interaction between Akt, TSC2 and the 2 mTOR complexes. Biochem. Soc. Trans. 37, 217–222 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Lack of Tsc1/Tsc2 prompts mTOR and disrupts PI3K-Akt signaling by downregulation of PDGFR. J. Clin. Make investments. 112, 1223–1233 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breuleux, M. et al. Elevated AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and doesn’t predict tumor cell response to PI3K/mTOR inhibition. Mol. Most cancers Ther. 8, 742–753 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, Y. et al. Phosphoproteomic evaluation identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dibble, C. C., Asara, J. M. & Manning, B. D. Characterization of Rictor phosphorylation websites reveals direct regulation of mTOR advanced 2 by S6K1. Mol. Cell Biol. 29, 5657–5670 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Julien, L. A., Carriere, A., Moreau, J. & Roux, P. P. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell Biol. 30, 908–921 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, P. et al. Sin1 phosphorylation impairs mTORC2 advanced integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell Biol. 15, 1340–1350 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, A. C. et al. Complete mutation evaluation of TSC1 and TSC2-and phenotypic correlations in 150 households with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dabora, S. L. et al. Mutational evaluation in a cohort of 224 tuberous sclerosis sufferers signifies elevated severity of TSC2, in contrast with TSC1, illness in a number of organs. Am. J. Hum. Genet. 68, 64–80 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tyburczy, M. E. et al. Mosaic and intronic mutations in TSC1/TSC2 clarify nearly all of TSC sufferers with no mutation recognized by standard testing. PLoS Genet 11, e1005637 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Blair, J. D., Hockemeyer, D. & Bateup, H. S. Genetically engineered human cortical spheroid fashions of tuberous sclerosis. Nat. Med. 24, 1568–1578 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, A. et al. Rapamycin reverses impaired social interplay in mouse fashions of tuberous sclerosis advanced. Nat. Commun. 3, 1292 (2012).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Benthall, Okay. N. et al. Lack of Tsc1 from striatal direct pathway neurons impairs endocannabinoid-LTD and enhances motor routine studying. Cell Rep. 36, 109511 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hentges, Okay. E. et al. FRAP/mTOR is required for proliferation and patterning throughout embryonic growth within the mouse. Proc. Natl Acad. Sci. USA 98, 13796–13801 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cloetta, D. et al. Inactivation of mTORC1 within the growing mind causes microcephaly and impacts gliogenesis. J. Neurosci. 33, 7799–7810 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ka, M., Condorelli, G., Woodgett, J. R. & Kim, W. Y. mTOR regulates mind morphogenesis by mediating GSK3 signaling. Growth 141, 4076–4086 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Neuronal mTORC1 Is Required for Sustaining the Nonreactive State of Astrocytes. J. Biol. Chem. 292, 100–111 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diez, H., Garrido, J. J. & Wandosell, F. Particular roles of Akt iso types in apoptosis and axon development regulation in neurons. PLoS ONE 7, e32715 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanderplow, A. M. et al. Akt-mTOR hypoactivity in bipolar dysfunction provides rise to cognitive impairments related to altered neuronal construction and performance. Neuron 109, 1479–1496 e1476 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machado-Vieira, R. et al. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar dysfunction. Eur. Neuropsychopharmacol. 25, 468–473 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kosillo, P. et al. Tsc1-mTORC1 signaling controls striatal dopamine launch and cognitive flexibility. Nat. Commun. 10, 5426 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: a web based algorithm for piecewise inflexible movement correction of calcium imaging information. J. Neurosci. Strategies 291, 83–94 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Supply hyperlink

    Leave a Reply

    Your email address will not be published. Required fields are marked *