Mizuguchi, M. & Takashima, S. Neuropathology of tuberous sclerosis. Mind Dev. 23, 508–515 (2001).
Google Scholar
Curatolo, P., Moavero, R. & de Vries, P. J. Neurological and neuropsychiatric facets of tuberous sclerosis advanced. Lancet Neurol. 14, 733–745 (2015).
Google Scholar
Nabbout, R. et al. Epilepsy in tuberous sclerosis advanced: findings from the TOSCA Examine. Epilepsia Open 4, 73–84 (2019).
Google Scholar
Chu-Shore, C. J., Main, P., Camposano, S., Muzykewicz, D. & Thiele, E. A. The pure historical past of epilepsy in tuberous sclerosis advanced. Epilepsia 51, 1236–1241 (2010).
Google Scholar
de Vries, P. J. et al. A medical replace on tuberous sclerosis complex-associated neuropsychiatric problems (TAND). Am. J. Med. Genet. C: Semin. Med. Genet. 178, 309–320 (2018).
Google Scholar
Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Construction of the FKBP12-rapamycin advanced interacting with the binding area of human FRAP. Science 273, 239–242 (1996).
Google Scholar
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent style and is homologous to yeast TORs. Cell 78, 35–43 (1994).
Google Scholar
Karalis, V. & Bateup, H. S. Present approaches and future instructions for the remedy of mTORopathies. Dev. Neurosci. 1–16, https://doi.org/10.1159/000515672 (2021).
Meikle, L. et al. Response of a neuronal mannequin of tuberous sclerosis to mammalian goal of rapamycin (mTOR) inhibitors: results on mTORC1 and Akt signaling result in improved survival and performance. J. Neurosci. 28, 5422–5432 (2008).
Google Scholar
Franz, D. N. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis advanced. Ann. Neurol. 59, 490–498 (2006).
Google Scholar
Franz, D. N. et al. Efficacy and security of everolimus for subependymal large cell astrocytomas related to tuberous sclerosis advanced (EXIST-1): a multicentre, randomised, placebo-controlled part 3 trial. Lancet 381, 125–132 (2013).
Google Scholar
Krueger, D. A. et al. Everolimus long-term security and efficacy in subependymal large cell astrocytoma. Neurology 80, 574–580 (2013).
Google Scholar
Cardamone, M. et al. Mammalian goal of rapamycin inhibitors for intractable epilepsy and subependymal large cell astrocytomas in tuberous sclerosis advanced. J. Pediatr. 164, 1195–1200 (2014).
Google Scholar
French, J. A. et al. Adjunctive everolimus remedy for treatment-resistant focal-onset seizures related to tuberous sclerosis (EXIST-3): a part 3, randomised, double-blind, placebo-controlled research. Lancet 388, 2153–2163 (2016).
Google Scholar
Kaplan, B., Qazi, Y. & Wellen, J. R. Methods for the administration of antagonistic occasions related to mTOR inhibitors. Transpl. Rev. (Orlando) 28, 126–133 (2014).
Google Scholar
Krueger, D. A. et al. Everolimus for remedy of tuberous sclerosis complex-associated neuropsychiatric problems. Ann. Clin. Transl. Neurol. 4, 877–887 (2017).
Google Scholar
Overwater, I. E. et al. A randomized managed trial with everolimus for IQ and autism in tuberous sclerosis advanced. Neurology 93, e200–e209 (2019).
Google Scholar
van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).
Google Scholar
European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).
Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis advanced gene merchandise, Tuberin and Hamartin, management mTOR signaling by performing as a GTPase-activating protein advanced towards Rheb. Curr. Biol. 13, 1259–1268 (2003).
Google Scholar
Yang, H. et al. Structural insights into TSC advanced meeting and GAP exercise on Rheb. Nat. Commun. 12, 339 (2021).
Google Scholar
Yang, H. et al. mTOR kinase construction, mechanism and regulation. Nature 497, 217–223 (2013).
Google Scholar
Hara, Okay. et al. Raptor, a binding accomplice of goal of rapamycin (TOR), mediates TOR motion. Cell 110, 177–189 (2002).
Google Scholar
Kim, D. H. et al. mTOR interacts with raptor to type a nutrient-sensitive advanced that indicators to the cell development equipment. Cell 110, 163–175 (2002).
Google Scholar
Gingras, A. C., Raught, B. & Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001).
Google Scholar
Burnett, P. E., Barrow, R. Okay., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).
Google Scholar
Hara, Okay. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26457–26463 (1997).
Google Scholar
Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell dimension is managed by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).
Google Scholar
Bateup, H. S., Denefrio, C. L., Johnson, C. A., Saulnier, J. L. & Sabatini, B. L. Temporal dynamics of a homeostatic pathway controlling neural community exercise. Entrance. Mol. Neurosci. 6, 28 (2013).
Google Scholar
Switon, Okay., Kotulska, Okay., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience 341, 112–153 (2017).
Google Scholar
Liu, G. Y. & Sabatini, D. M. mTOR on the nexus of diet, development, ageing and illness. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
Google Scholar
Sarbassov, D. D. et al. Extended rapamycin remedy inhibits mTORC2 meeting and Akt/PKB. Mol. Cell 22, 159–168 (2006).
Google Scholar
Scaiola, A. et al. The three.2-A decision construction of human mTORC2. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abc1251 (2020).
Sarbassov, D. D. et al. Rictor, a novel binding accomplice of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).
Google Scholar
Urbanska, M., Gozdz, A., Swiech, L. J. & Jaworski, J. Mammalian goal of rapamycin advanced 1 (mTORC1) and a pair of (mTORC2) management the dendritic arbor morphology of hippocampal neurons. J. Biol. Chem. 287, 30240–30256 (2012).
Google Scholar
Huang, W. et al. mTORC2 controls actin polymerization required for consolidation of long-term reminiscence. Nat. Neurosci. 16, 441–448 (2013).
Google Scholar
Angliker, N. & Ruegg, M. A. In vivo proof for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture 3, 113–118 (2013).
Google Scholar
McCabe, M. P. et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct capabilities in glutamatergic synaptic transmission. Elife 9, https://doi.org/10.7554/eLife.51440 (2020).
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR advanced. Science 307, 1098–1101 (2005).
Google Scholar
Saxton, R. A. & Sabatini, D. M. mTOR signaling in development, metabolism, and illness. Cell 168, 960–976 (2017).
Google Scholar
Xie, J. & Proud, C. G. Signaling crosstalk between the mTOR complexes. Translation (Austin) 2, e28174 (2014).
Chen, C. J. et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities related to Pten-deficiency. Nat. Med. 25, 1684–1690 (2019).
Google Scholar
Zhu, P. J., Chen, C. J., Mays, J., Stoica, L. & Costa-Mattioli, M. mTORC2, however not mTORC1, is required for hippocampal mGluR-LTD and related behaviors. Nat. Neurosci. 21, 799–802 (2018).
Google Scholar
Bateup, H. S., Takasaki, Okay. T., Saulnier, J. L., Denefrio, C. L. & Sabatini, B. L. Lack of Tsc1 in vivo impairs hippocampal mGluR-LTD and will increase excitatory synaptic operate. J. Neurosci. 31, 8862–8869 (2011).
Google Scholar
Chevere-Torres, I. et al. Metabotropic glutamate receptor-dependent long-term despair is impaired because of elevated ERK signaling within the DeltaRG mouse mannequin of tuberous sclerosis advanced. Neurobiol. Dis. 45, 1101–1110 (2012).
Google Scholar
Auerbach, B. D., Osterweil, E. Okay. & Bear, M. F. Mutations inflicting syndromic autism outline an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).
Google Scholar
Potter, W. B. et al. Diminished juvenile long-term despair in tuberous sclerosis advanced is mitigated in adults by compensatory recruitment of mGluR5 and Erk signaling. PLoS Biol. 11, e1001627 (2013).
Google Scholar
Kwiatkowski, D. J. et al. A mouse mannequin of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase exercise in Tsc1 null cells. Hum. Mol. Genet 11, 525–534 (2002).
Google Scholar
Tang, F. et al. A important position for Rictor in T lymphopoiesis. J. Immunol. 189, 1850–1857 (2012).
Google Scholar
Magee, J. A. et al. Temporal adjustments in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11, 415–428 (2012).
Google Scholar
Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).
Google Scholar
Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).
Google Scholar
Gorski, J. A. et al. Cortical excitatory neurons and glia, however not GABAergic neurons, are produced within the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).
Google Scholar
Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells results in growth of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9, 447–462 (2011).
Google Scholar
Carson, R. P., Van Nielen, D. L., Winzenburger, P. A. & Ess, Okay. C. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45, 369–380 (2012).
Google Scholar
Carson, R. P., Fu, C., Winzenburger, P. & Ess, Okay. C. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis advanced. Hum. Mol. Genet. 22, 140–152 (2013).
Google Scholar
Meikle, L. et al. A mouse mannequin of tuberous sclerosis: neuronal lack of Tsc1 causes dysplastic and ectopic neurons, lowered myelination, seizure exercise, and restricted survival. J. Neurosci. 27, 5546–5558 (2007).
Google Scholar
Bateup, H. S. et al. Excitatory/Inhibitory synaptic imbalance results in hippocampal hyperexcitability in mouse fashions of tuberous sclerosis. Neuron 78, 510–522 (2013).
Google Scholar
Kulkarni, R. U. et al. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc. Natl Acad. Sci. USA 114, 2813–2818 (2017).
Google Scholar
Dana, H. et al. Delicate pink protein calcium indicators for imaging neural exercise. Elife 5, https://doi.org/10.7554/eLife.12727 (2016).
Goorden, S. M., van Woerden, G. M., van der Weerd, L., Cheadle, J. P. & Elgersma, Y. Cognitive deficits in Tsc1+/- mice within the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648–655 (2007).
Google Scholar
Ehninger, D. et al. Reversal of studying deficits in a Tsc2+/- mouse mannequin of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).
Google Scholar
Lozovaya, N. et al. Selective suppression of extreme GluN2C expression rescues early epilepsy in a tuberous sclerosis murine mannequin. Nat. Commun. 5, 4563 (2014).
Google Scholar
Gataullina, S. et al. Epilepsy in younger Tsc1(+/-) mice displays age-dependent expression that mimics that of human tuberous sclerosis advanced. Epilepsia 57, 648–659 (2016).
Google Scholar
Nadadhur, A. G. et al. Neuron-Glia interactions enhance neuronal phenotypes in tuberous sclerosis advanced affected person iPSC-derived fashions. Stem Cell Rep. 12, 42–56 (2019).
Google Scholar
Alsaqati, M., Heine, V. M. & Harwood, A. J. Pharmacological intervention to revive connectivity deficits of neuronal networks derived from ASD affected person iPSC with a TSC2 mutation. Mol. Autism 11, 80 (2020).
Google Scholar
Winden, Okay. D. et al. Biallelic mutations in TSC2 result in abnormalities related to cortical tubers in human iPSC-derived neurons. J. Neurosci. 39, 9294–9305 (2019).
Google Scholar
Thoreen, C. C. et al. An ATP-competitive mammalian goal of rapamycin inhibitor reveals rapamycin-resistant capabilities of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).
Google Scholar
Lebrun-Julien, F. et al. Balanced mTORC1 exercise in oligodendrocytes is required for correct CNS myelination. J. Neurosci. 34, 8432–8448 (2014).
Google Scholar
Shi, Q., Saifetiarova, J., Taylor, A. M. & Bhat, M. A. mTORC1 activation by lack of Tsc1 in myelinating glia causes downregulation of quaking and neurofascin 155 resulting in paranodal area disorganization. Entrance Cell Neurosci. 12, 201 (2018).
Google Scholar
Ercan, E. et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse mannequin of tuberous sclerosis advanced. J. Exp. Med. 214, 681–697 (2017).
Google Scholar
Bercury, Okay. Okay. et al. Conditional ablation of raptor or rictor has differential affect on oligodendrocyte differentiation and CNS myelination. J. Neurosci. 34, 4466–4480 (2014).
Google Scholar
Crino, P. B. The mTOR signalling cascade: paving new roads to remedy neurological illness. Nat. Rev. Neurol. 12, 379–392 (2016).
Google Scholar
Huang, W. C., Chen, Y. & Web page, D. T. Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse mannequin of macrocephaly/autism syndrome. Nat. Commun. 7, 13421 (2016).
Google Scholar
Carracedo, A. & Pandolfi, P. P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).
Google Scholar
Yang, G., Murashige, D. S., Humphrey, S. J. & James, D. E. A constructive suggestions loop between Akt and mTORC2 by way of SIN1 phosphorylation. Cell Rep. 12, 937–943 (2015).
Google Scholar
Bhattacharya, Okay., Maiti, S. & Mandal, C. PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma by way of Rictor hyperphosphorylation at Thr1135 and direct the mode of motion of an mTORC1/2 inhibitor. Oncogenesis 5, e227 (2016).
Google Scholar
Weston, M. C., Chen, H. & Swann, J. W. Lack of mTOR repressors Tsc1 or Pten has divergent results on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures. Entrance. Mol. Neurosci. 7, 1 (2014).
Google Scholar
Inoki, Okay., Li, Y., Xu, T. & Guan, Okay. L. Rheb GTPase is a direct goal of TSC2 GAP exercise and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).
Google Scholar
Huang, J., Dibble, C. C., Matsuzaki, M. & Manning, B. D. The TSC1-TSC2 advanced is required for correct activation of mTOR advanced 2. Mol. Cell Biol. 28, 4104–4115 (2008).
Google Scholar
Huang, J. & Manning, B. D. A fancy interaction between Akt, TSC2 and the 2 mTOR complexes. Biochem. Soc. Trans. 37, 217–222 (2009).
Google Scholar
Zhang, H. et al. Lack of Tsc1/Tsc2 prompts mTOR and disrupts PI3K-Akt signaling by downregulation of PDGFR. J. Clin. Make investments. 112, 1223–1233 (2003).
Google Scholar
Breuleux, M. et al. Elevated AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and doesn’t predict tumor cell response to PI3K/mTOR inhibition. Mol. Most cancers Ther. 8, 742–753 (2009).
Google Scholar
Yu, Y. et al. Phosphoproteomic evaluation identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).
Google Scholar
Dibble, C. C., Asara, J. M. & Manning, B. D. Characterization of Rictor phosphorylation websites reveals direct regulation of mTOR advanced 2 by S6K1. Mol. Cell Biol. 29, 5657–5670 (2009).
Google Scholar
Julien, L. A., Carriere, A., Moreau, J. & Roux, P. P. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell Biol. 30, 908–921 (2010).
Google Scholar
Liu, P. et al. Sin1 phosphorylation impairs mTORC2 advanced integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell Biol. 15, 1340–1350 (2013).
Google Scholar
Jones, A. C. et al. Complete mutation evaluation of TSC1 and TSC2-and phenotypic correlations in 150 households with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315 (1999).
Google Scholar
Dabora, S. L. et al. Mutational evaluation in a cohort of 224 tuberous sclerosis sufferers signifies elevated severity of TSC2, in contrast with TSC1, illness in a number of organs. Am. J. Hum. Genet. 68, 64–80 (2001).
Google Scholar
Tyburczy, M. E. et al. Mosaic and intronic mutations in TSC1/TSC2 clarify nearly all of TSC sufferers with no mutation recognized by standard testing. PLoS Genet 11, e1005637 (2015).
Google Scholar
Blair, J. D., Hockemeyer, D. & Bateup, H. S. Genetically engineered human cortical spheroid fashions of tuberous sclerosis. Nat. Med. 24, 1568–1578 (2018).
Google Scholar
Sato, A. et al. Rapamycin reverses impaired social interplay in mouse fashions of tuberous sclerosis advanced. Nat. Commun. 3, 1292 (2012).
Google Scholar
Benthall, Okay. N. et al. Lack of Tsc1 from striatal direct pathway neurons impairs endocannabinoid-LTD and enhances motor routine studying. Cell Rep. 36, 109511 (2021).
Google Scholar
Hentges, Okay. E. et al. FRAP/mTOR is required for proliferation and patterning throughout embryonic growth within the mouse. Proc. Natl Acad. Sci. USA 98, 13796–13801 (2001).
Google Scholar
Cloetta, D. et al. Inactivation of mTORC1 within the growing mind causes microcephaly and impacts gliogenesis. J. Neurosci. 33, 7799–7810 (2013).
Google Scholar
Ka, M., Condorelli, G., Woodgett, J. R. & Kim, W. Y. mTOR regulates mind morphogenesis by mediating GSK3 signaling. Growth 141, 4076–4086 (2014).
Google Scholar
Zhang, Y. et al. Neuronal mTORC1 Is Required for Sustaining the Nonreactive State of Astrocytes. J. Biol. Chem. 292, 100–111 (2017).
Google Scholar
Diez, H., Garrido, J. J. & Wandosell, F. Particular roles of Akt iso types in apoptosis and axon development regulation in neurons. PLoS ONE 7, e32715 (2012).
Google Scholar
Vanderplow, A. M. et al. Akt-mTOR hypoactivity in bipolar dysfunction provides rise to cognitive impairments related to altered neuronal construction and performance. Neuron 109, 1479–1496 e1476 (2021).
Google Scholar
Machado-Vieira, R. et al. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar dysfunction. Eur. Neuropsychopharmacol. 25, 468–473 (2015).
Google Scholar
Kosillo, P. et al. Tsc1-mTORC1 signaling controls striatal dopamine launch and cognitive flexibility. Nat. Commun. 10, 5426 (2019).
Google Scholar
Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: a web based algorithm for piecewise inflexible movement correction of calcium imaging information. J. Neurosci. Strategies 291, 83–94 (2017).
Google Scholar